

C++

 EIGHTH ED IT ION

 STARTING OUT WITH

 C++
 From Control Structures

through Objects

This page intentionally left blank

C++

 EIGHTH ED IT ION

 STARTING OUT WITH

 C++
 From Control Structures

through Objects

 Tony Gaddis
 Haywood Community College

 Boston Columbus Indianapolis New York San Francisco Upper Saddle River

Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto
Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Credits and acknowledgments borrowed from other sources and reproduced, with permission, appear on the
Credits page in the endmatter of this textbook.

Copyright © 2015, 2012, 2009 Pearson Education, Inc., publishing as Addison-Wesley All rights reserved.
Manufactured in the United States of America. This publication is protected by Copyright, and permission
should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or
transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To
obtain permission(s) to use material from this work, please submit a written request to Pearson Education,
Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458 or you may fax your
request to 201 236-3290.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data

Gaddis, Tony.
 Starting out with C++ : from control structures through objects/Tony Gaddis.—Eighth edition.
 pages cm
 Includes bibliographical references and index.
 Online the following appendices are available at www.pearsonhighered.com/gaddis: Appendix D:
Introduction to fl owcharting; Appendix E: Using UML in class design; Appendix F: Namespaces; Appendix G:
Writing managed C++ code for the .net framework; Appendix H: Passing command line arguments; Appendix
I: Header fi le and library function reference; Appendix J: Binary numbers and bitwise operations; Appendix K:
Multi-source fi le programs; Appendix L: Stream member functions for formatting; Appendix M: Introduction
to Microsoft Visual C++ 2010 express edition; Appendix N: Answers to checkpoints; and Appendix O:
Solutions to odd-numbered review questions.
 ISBN-13: 978-0-13-376939-5
 ISBN-10: 0-13-376939-9
 1. C++ (Computer program language) I. Title. II. Title: From control structures through objects.
 QA76.73.C153G33 2014b
 005.13’3—dc23
 2014000213

10 9 8 7 6 5 4 3 2 1

 Editorial Director: Marcia Horton
Acquisitions Editor: Matt Goldstein
Program Manager: Kayla Smith-Tarbox
Director of Marketing: Christy Lesko
Marketing Coordinator: Kathryn Ferranti
Marketing Assistant: Jon Bryant
Senior Managing Editor: Scott Disanno
Senior Project Manager: Marilyn Lloyd
Operations Supervisor: Vincent Scelta
Operations Specialist: Linda Sager
Art Director, Cover: Jayne Conte
Text Designer: Joyce Cosentino Wells

Cover Designer: Bruce Kenselaar
Manager, Visual Research: Karen Sanatar
Permissions Supervisor: Michael Joyce
Permission Administrator: Jenell Forschler
Cover Image: Sergio37_120/Fotolia
Media Project Manager: Renata Butera
Full-Service Project Manager: Jogender Taneja
 Aptara®, Inc.
Full-Service Vendor: Aptara®, Inc.
Printer/Binder: Courier Kendallville
Cover Printer: Lehigh-Phoenix Color/Hagerstown

 ISBN 13: 978-0-13-376939-5
 ISBN 10: 0-13-376939-9

www.pearsonhighered.com/gaddis

v

 Contents at a Glance

 Preface xv

 CHAPTER 1 Introduction to Computers and Programming 1

 CHAPTER 2 Introduction to C++ 27

 CHAPTER 3 Expressions and Interactivity 83

 CHAPTER 4 Making Decisions 149

 CHAPTER 5 Loops and Files 227

 CHAPTER 6 Functions 299

 CHAPTER 7 Arrays 375

 CHAPTER 8 Searching and Sorting Arrays 457

 CHAPTER 9 Pointers 495

 CHAPTER 10 Characters, C-Strings, and More About the string Class 547

 CHAPTER 11 Structured Data 599

 CHAPTER 12 Advanced File Operations 657

 CHAPTER 13 Introduction to Classes 711

 CHAPTER 14 More About Classes 811

 CHAPTER 15 Inheritance, Polymorphism, and Virtual Functions 891

 CHAPTER 16 Exceptions, Templates, and the Standard Template
Library (STL) 971

 CHAPTER 17 Linked Lists 1025

 CHAPTER 18 Stacks and Queues 1063

 CHAPTER 19 Recursion 1121

 CHAPTER 20 Binary Trees 1155

 Appendix A: Getting Started with Alice 1185

 Appendix B: The ASCII Character Set 1211

 Appendix C: Operator Precedence and Associativity 1213

 Quick References 1215

vi Contents at a Glance

 Index 1217

 Credit 1237

Online The following appendices are available at www.pearsonhighered.com/gaddis.

 Appendix D: Introduction to Flowcharting

 Appendix E: Using UML in Class Design

 Appendix F: Namespaces

 Appendix G: Passing Command Line Arguments

 Appendix H: Header File and Library Function Reference

 Appendix I: Binary Numbers and Bitwise Operations

 Appendix J: Multi-Source File Programs

 Appendix K: Stream Member Functions for Formatting

 Appendix L: Answers to Checkpoints

 Appendix M: Solutions to Odd-Numbered Review Questions

www.pearsonhighered.com/gaddis

 Preface xv

 CHAPTER 1 Introduction to Computers and Programming 1

 1.1 Why Program? 1
 1.2 Computer Systems: Hardware and Software 2
 1.3 Programs and Programming Languages 8
 1.4 What Is a Program Made of? 14
 1.5 Input, Processing, and Output 17
 1.6 The Programming Process 18
 1.7 Procedural and Object-Oriented Programming 22

 CHAPTER 2 Introduction to C++ 27

 2.1 The Parts of a C++ Program 27
 2.2 The cout Object 31
 2.3 The #include Directive 36
 2.4 Variables and Literals 37
 2.5 Identifiers 41
 2.6 Integer Data Types 42
 2.7 The char Data Type 48
 2.8 The C++ string Class 52
 2.9 Floating-Point Data Types 54
 2.10 The bool Data Type 57
 2.11 Determining the Size of a Data Type 58
 2.12 Variable Assignments and Initialization 59
 2.13 Scope 61
 2.14 Arithmetic Operators 61
 2.15 Comments 69
 2.16 Named Constants 71
 2.17 Programming Style 73

vii

 Contents

viii Contents

 CHAPTER 3 Expressions and Interactivity 83

 3.1 The cin Object 83
 3.2 Mathematical Expressions 89
 3.3 When You Mix Apples and Oranges: Type Conversion 98
 3.4 Overflow and Underflow 100
 3.5 Type Casting 101
 3.6 Multiple Assignment and Combined Assignment 104
 3.7 Formatting Output 108
 3.8 Working with Characters and string Objects 118
 3.9 More Mathematical Library Functions 124
 3.10 Focus on Debugging: Hand Tracing a Program 130
 3.11 Focus on Problem Solving: A Case Study 132

 CHAPTER 4 Making Decisions 149

 4.1 Relational Operators 149
 4.2 The if Statement 154
 4.3 Expanding the if Statement 162
 4.4 The if/else Statement 166
 4.5 Nested if Statements 169
 4.6 The if/else if Statement 176
 4.7 Flags 181
 4.8 Logical Operators 182
 4.9 Checking Numeric Ranges with Logical Operators 189
 4.10 Menus 190
 4.11 Focus on Software Engineering: Validating User Input 193
 4.12 Comparing Characters and Strings 195
 4.13 The Conditional Operator 199
 4.14 The switch Statement 202
 4.15 More About Blocks and Variable Scope 211

 CHAPTER 5 Loops and Files 227

 5.1 The Increment and Decrement Operators 227
 5.2 Introduction to Loops: The while Loop 232
 5.3 Using the while Loop for Input Validation 239
 5.4 Counters 241
 5.5 The do-while Loop 242
 5.6 The for Loop 247
 5.7 Keeping a Running Total 257
 5.8 Sentinels 260
 5.9 Focus on Software Engineering: Deciding Which Loop to Use 261
 5.10 Nested Loops 262
 5.11 Using Files for Data Storage 265
 5.12 Optional Topics: Breaking and Continuing a Loop 284

 CHAPTER 6 Functions 299

 6.1 Focus on Software Engineering: Modular Programming 299
 6.2 Defining and Calling Functions 300
 6.3 Function Prototypes 309
 6.4 Sending Data into a Function 311

 Contents ix

 6.5 Passing Data by Value 316
 6.6 Focus on Software Engineering: Using Functions in a

 Menu-Driven Program 318
 6.7 The return Statement 322
 6.8 Returning a Value from a Function 324
 6.9 Returning a Boolean Value 332
 6.10 Local and Global Variables 334
 6.11 Static Local Variables 342
 6.12 Default Arguments 345
 6.13 Using Reference Variables as Parameters 348
 6.14 Overloading Functions 354
 6.15 The exit() Function 358
 6.16 Stubs and Drivers 361

 CHAPTER 7 Arrays 375

 7.1 Arrays Hold Multiple Values 375
 7.2 Accessing Array Elements 377
 7.3 No Bounds Checking in C++ 384
 7.4 Array Initialization 387
 7.5 The Range-Based for Loop 392
 7.6 Processing Array Contents 396
 7.7 Focus on Software Engineering: Using Parallel Arrays 404
 7.8 Arrays as Function Arguments 407
 7.9 Two-Dimensional Arrays 418
 7.10 Arrays with Three or More Dimensions 425
 7.11 Focus on Problem Solving and Program Design: A Case Study 427
 7.12 If You Plan to Continue in Computer Science: Introduction to the

 STL vector 429

 CHAPTER 8 Searching and Sorting Arrays 457

 8.1 Focus on Software Engineering: Introduction to Search Algorithms 457
 8.2 Focus on Problem Solving and Program Design: A Case Study 463
 8.3 Focus on Software Engineering: Introduction to Sorting Algorithms 470
 8.4 Focus on Problem Solving and Program Design: A Case Study 477
 8.5 If You Plan to Continue in Computer Science: Sorting and

 Searching vectors 485

 CHAPTER 9 Pointers 495

 9.1 Getting the Address of a Variable 495
 9.2 Pointer Variables 497
 9.3 The Relationship Between Arrays and Pointers 504
 9.4 Pointer Arithmetic 508
 9.5 Initializing Pointers 510
 9.6 Comparing Pointers 511
 9.7 Pointers as Function Parameters 513
 9.8 Focus on Software Engineering: Dynamic Memory Allocation 522
 9.9 Focus on Software Engineering: Returning Pointers from Functions 526
 9.10 Using Smart Pointers to Avoid Memory Leaks 533
 9.11 Focus on Problem Solving and Program Design: A Case Study 536

x Contents

 CHAPTER 10 Characters, C-Strings, and More About the string Class 547

 10.1 Character Testing 547
 10.2 Character Case Conversion 551
 10.3 C-Strings 554
 10.4 Library Functions for Working with C-Strings 558
 10.5 C-String/Numeric Conversion Functions 569
 10.6 Focus on Software Engineering: Writing Your Own

 C-String-Handling Functions 575
 10.7 More About the C++ string Class 581
 10.8 Focus on Problem Solving and Program Design: A Case Study 590

 CHAPTER 11 Structured Data 599

 11.1 Abstract Data Types 599
 11.2 Focus on Software Engineering: Combining Data into Structures 601
 11.3 Accessing Structure Members 604
 11.4 Initializing a Structure 608
 11.5 Arrays of Structures 611
 11.6 Focus on Software Engineering: Nested Structures 613
 11.7 Structures as Function Arguments 617
 11.8 Returning a Structure from a Function 620
 11.9 Pointers to Structures 623
 11.10 Focus on Software Engineering: When to Use . , When to Use -> ,

 and When to Use * 626
 11.11 Unions 628
 11.12 Enumerated Data Types 632

 CHAPTER 12 Advanced File Operations 657

 12.1 File Operations 657
 12.2 File Output Formatting 663
 12.3 Passing File Stream Objects to Functions 665
 12.4 More Detailed Error Testing 667
 12.5 Member Functions for Reading and Writing Files 670
 12.6 Focus on Software Engineering: Working with Multiple Files 678
 12.7 Binary Files 680
 12.8 Creating Records with Structures 685
 12.9 Random-Access Files 689
 12.10 Opening a File for Both Input and Output 697

 CHAPTER 13 Introduction to Classes 711

 13.1 Procedural and Object-Oriented Programming 711
 13.2 Introduction to Classes 718
 13.3 Defining an Instance of a Class 723
 13.4 Why Have Private Members? 736
 13.5 Focus on Software Engineering: Separating Class Specification

 from Implementation 737
 13.6 Inline Member Functions 743
 13.7 Constructors 746
 13.8 Passing Arguments to Constructors 750

 Contents xi

 13.9 Destructors 758
 13.10 Overloading Constructors 762
 13.11 Private Member Functions 765
 13.12 Arrays of Objects 767
 13.13 Focus on Problem Solving and Program Design: An OOP Case Study 771
 13.14 Focus on Object-Oriented Programming: Simulating Dice with Objects 778
 13.15 Focus on Object-Oriented Programming: Creating an Abstract Array

 Data Type 782
 13.16 Focus on Object-Oriented Design: The Unified Modeling Language (UML) 785
 13.17 Focus on Object-Oriented Design: Finding the Classes and Their

 Responsibilities 788

 CHAPTER 14 More About Classes 811

 14.1 Instance and Static Members 811
 14.2 Friends of Classes 819
 14.3 Memberwise Assignment 824
 14.4 Copy Constructors 825
 14.5 Operator Overloading 831
 14.6 Object Conversion 858
 14.7 Aggregation 860
 14.8 Focus on Object-Oriented Design: Class Collaborations 865
 14.9 Focus on Object-Oriented Programming: Simulating the Game

of Cho-Han 869

 CHAPTER 15 Inheritance, Polymorphism, and Virtual Functions 891

 15.1 What Is Inheritance? 891
 15.2 Protected Members and Class Access 900
 15.3 Constructors and Destructors in Base and Derived Classes 906
 15.4 Redefining Base Class Functions 918
 15.5 Class Hierarchies 923
 15.6 Polymorphism and Virtual Member Functions 929
 15.7 Abstract Base Classes and Pure Virtual Functions 945
 15.8 Multiple Inheritance 952

 CHAPTER 16 Exceptions, Templates, and the Standard Template
Library (STL) 971

 16.1 Exceptions 971
 16.2 Function Templates 990
 16.3 Focus on Software Engineering: Where to Start When Defining Templates 996
 16.4 Class Templates 996
 16.5 Introduction to the Standard Template Library (STL) 1005

 CHAPTER 17 Linked Lists 1025

 17.1 Introduction to the Linked List ADT 1025
 17.2 Linked List Operations 1027
 17.3 A Linked List Template 1043
 17.4 Variations of the Linked List 1055
 17.5 The STL list Container 1056

xii Contents

 CHAPTER 18 Stacks and Queues 1063

 18.1 Introduction to the Stack ADT 1063
 18.2 Dynamic Stacks 1080
 18.3 The STL stack Container 1091
 18.4 Introduction to the Queue ADT 1093
 18.5 Dynamic Queues 1105
 18.6 The STL deque and queue Containers 1112

 CHAPTER 19 Recursion 1121

 19.1 Introduction to Recursion 1121
 19.2 Solving Problems with Recursion 1125
 19.3 Focus on Problem Solving and Program Design: The Recursive

 gcd Function 1133
 19.4 Focus on Problem Solving and Program Design: Solving Recursively

Defined Problems 1134
 19.5 Focus on Problem Solving and Program Design: Recursive Linked List

 Operations 1135
 19.6 Focus on Problem Solving and Program Design: A Recursive Binary

 Search Function 1139
 19.7 The Towers of Hanoi 1141
 19.8 Focus on Problem Solving and Program Design: The QuickSort Algorithm 1144
 19.9 Exhaustive Algorithms 1148
 19.10 Focus on Software Engineering: Recursion vs. Iteration 1151

 CHAPTER 20 Binary Trees 1155

 20.1 Definition and Applications of Binary Trees 1155
 20.2 Binary Search Tree Operations 1158
 20.3 Template Considerations for Binary Search Trees 1175

 Appendix A: Getting Started with Alice 1185

 Appendix B: The ASCII Character Set 1211

 Appendix C: Operator Precedence and Associativity 1213

 Quick References 1215

 Index 1217

 Credit 1237

Online The following appendices are available at www.pearsonhighered.com/gaddis.

 Appendix D: Introduction to Flowcharting

 Appendix E: Using UML in Class Design

 Appendix F: Namespaces

 Appendix G: Passing Command Line Arguments

 Appendix H: Header File and Library Function Reference

 Appendix I: Binary Numbers and Bitwise Operations

 Appendix J: Multi-Source File Programs

 Appendix K: Stream Member Functions for Formatting

 Appendix L: Answers to Checkpoints

 Appendix M: Solutions to Odd-Numbered Review Questions

www.pearsonhighered.com/gaddis

LOCATION OF VIDEONOTES IN THE TEXT

Chapter 1 Introduction to Flowcharting, p. 20
 Designing a Program with Pseudocode, p. 20
 Designing the Account Balance Program, p. 25
 Predicting the Result of Problem 33, p. 26

Chapter 2 Using cout, p. 31
 Variabe Def nitions, p. 37
 Assignment Statements and Simple Math Expressions, p. 62
 Solving the Restaurant Bill Problem, p. 80

Chapter 3 Reading Input with cin, p. 83
 Formatting Numbers with setprecision, p. 111
 Solving the Stadium Seating Problem, p. 142

Chapter 4 The if Statement, p. 154
 The if/else statement, p. 166
 The if/else if Statement, p. 176
 Solving the Time Calculator Problem, p. 221

Chapter 5 The while Loop, p. 232
 The for Loop, p. 247
 Reading Data from a File, p. 274
 Solving the Calories Burned Problem, p. 293

Chapter 6 Functions and Arguments, p. 311
 Value-Returnlng Functions, p. 324
 Solving the Markup Problem, p. 366

Chapter 7 Accessing Array Elements With a Loop, p. 380
 Passing an Array to a Function, p. 407
 Solving the Chips and Salsa Problem, p. 448

Chapter 8 The Binary Search, p. 460
 The Selection Sort, p. 474
 Solving the Charge Account Validation Modif cation Problem, p. 492

Chapter 9 Dynamically Allocating an Array, p. 523
 Solving the Pointer Rewrite Problem, p. 545

Chapter 10 Writing a C-String-Handling Function, p. 575
 More About the string Class, p. 581
 Solving the Backward String Problem, p. 594

(continued on the next page)

LOCATION OF VIDEONOTES IN THE TEXT (continued)

Chapter 11 Creating a Structure, p. 601
 Passing a Structure to a Function, p. 617
 Solving the Weather Statistics Problem, p. 652

Chapter 12 Passing File Stream Objects to Functions, p. 665
 Working with Multiple Files, p. 678
 Solving the File Encryption Filter Problem, p. 708

Chapter 13 Writing a Class, p. 718
 Def ning an Instance of a Class, p. 723
 Solving the Employee Class Problem, p. 802

Chapter 14 Operator Overloading, p. 831
 Class Aggregation, p. 860
 Solving the NumDays Problem, p. 885

Chapter 15 Redef ning a Base Class Function in a Derived Class, p. 918
 Polymorphism, p. 929
 Solving the Employee and Production-Worker Classes Problem, p. 963

Chapter 16 Throwing an Exception, p. 972
 Handling an Exception, p. 972
 Writing a Function Template, p. 990
 Storing Objects in a vector, p. 1010
 Solving the Exception Project Problem, p. 1024

Chapter 17 Appending a Node to a Linked List, p. 1028
 Inserting a Node in a Linked List, p. 1035
 Deleting a Node from a Linked List, p. 1039
 Solving the Member Insertion by Position Problem, p. 1061

Chapter 18 Storing Objects in an STL stack, p. 1091
 Storing Objects in an STL queue, p. 1114
 Solving the File Compare Problem, p. 1119

Chapter 19 Reducing a Problem with Recursion, p. 1126
 Solving the Recursive Multiplication Problem, p. 1153

Chapter 20 Inserting a Node in a Binary Tree, p. 1160
 Deleting a Node from a Binary Tree, p. 1166
 Solving the Node Counter Problem, p. 1182

 Welcome to Starting Out with C++: From Control Structures through Objects, 8th edition.
This book is intended for use in a two-semester C++ programming sequence, or an acceler-
ated one-semester course. Students new to programming, as well as those with prior course
work in other languages, will fi nd this text benefi cial. The fundamentals of programming
are covered for the novice, while the details, pitfalls, and nuances of the C++ language are
explored in-depth for both the beginner and more experienced student. The book is written
with clear, easy-to-understand language, and it covers all the necessary topics for an intro-
ductory programming course. This text is rich in example programs that are concise, practi-
cal, and real-world oriented, ensuring that the student not only learns how to implement the
features and constructs of C++, but why and when to use them.

 Changes in the Eighth Edition
 C++11 is the latest standard version of the C++ language. In previous years, while the stan-
dard was being developed, it was known as C++0x. In August 2011, it was approved by
the International Standards Organization (ISO), and the name of the standard was offi cially
changed to C++11. Most of the popular compilers now support the C++11 standard.

 The new C++11 standard was the primary motivation behind this edition. Although this
edition introduces many of the new language features, a C++11 compiler is not strictly
required to use the book. As you progress through the book, you will see C++11 icons in the
margins, next to the new features that are introduced. Programs appearing in sections that
are not marked with this icon will still compile using an older compiler.

 Here is a summary of the new C++11 topics that are introduced in this edition:

 ● The auto key word is introduced as a way to simplify complex variable defi nitions.
The auto key word causes the compiler to infer a variable’s data type from its initial-
ization value.

 ● The long long int and unsigned long long int data types, and the LL literal
suffi x are introduced.

 ● Chapter 5 shows how to pass a string object directly to a fi le stream object’s open
member function, without the need to call the c_str() member function. (A discus-
sion of the c_str() function still exists for anyone using a legacy compiler.)

 Preface

xv

xvi Preface

 ● The range-based for loop is introduced in Chapter 7 . This new looping mechanism
automatically iterates over each element of an array, vector , or other collection,
without the need of a counter variable or a subscript.

 ● Chapter 7 shows how a vector can be initialized with an initialization list.

 ● The nullptr key word is introduced as the standard way of representing a null
pointer.

 ● Smart pointers are introduced in Chapter 9 , with an example of dynamic memory
allocation using unique_ptr .

 ● Chapter 10 discusses the new, overloaded to_string functions for converting numeric
values to string objects.

 ● The string class’s new back() and front() member functions are included in
 Chapter 10 ’s overview of the string class.

 ● Strongly typed enum s are discussed in Chapter 11 .

 ● Chapter 13 shows how to use the smart pointer unique_ptr to dynamically allocate
an object.

 ● Chapter 15 discusses the override key word and demonstrates how it can help prevent
subtle overriding errors. The final key word is discussed as a way of preventing a virtual
member function from being overridden.

 In addition to the C++11 topics, the following general improvements were made:

 ● Several new programming problems have been added to the text, and many of the
existing programming problems have been modifi ed to make them unique from previ-
ous editions.

 ● The discussion of early, historic computers in Chapter 1 is expanded.

 ● The discussion of literal values in Chapter 2 is improved.

 ● The introduction of the char data type in Chapter 2 is reorganized to use character
literals in variable assignments before using ASCII values in variable assignments.

 ● The discussion of random numbers in Chapter 3 is expanded and improved, with the
addition of a new In the Spotlight section.

 ● A new Focus on Object-Oriented Programming section has been added to Chapter 13 ,
showing how to write a class that simulates dice.

 ● A new Focus on Object-Oriented Programming section has been added to Chapter 14 ,
showing an object-oriented program that simulates the game of Cho-Han. The program
uses objects for the dealer, two players, and a pair of dice.

 Organization of the Text
 This text teaches C++ in a step-by-step fashion. Each chapter covers a major set of topics
and builds knowledge as the student progresses through the book. Although the chapters
can be easily taught in their existing sequence, some fl exibility is provided. The diagram
shown in Figure P-1 suggests possible sequences of instruction.

 Preface xvii

Chapter 8
Searching and
Sorting Arrays

Chapter 9
Pointers

Chapter 10
Characters, Strings,

and the string Class

Chapter 12
Advanced File
Operations*

Chapter 20
Binary Trees

Chapters 2–7
Basic Language

Elements

Chapter 11
Structures

Chapter 13
Introduction to

Classes

Chapter 14
More About Classes

Chapter 15
Inheritance and
Polymorphism

Chapter 16
Exceptions,

Templates, and STL

Chapter 17
Linked Lists

Chapter 18
Stacks and Queues

Chapter 19
Recursion

*A few subtopics in
Chapter 12 require
Chapters 9 and 11.

Chapter 1
Introduction

 Figure P-1

xviii Preface

 Chapter 1 covers fundamental hardware, software, and programming concepts. You may
choose to skip this chapter if the class has already mastered those topics. Chapters 2 through
 7 cover basic C++ syntax, data types, expressions, selection structures, repetition structures,
functions, and arrays. Each of these chapters builds on the previous chapter and should be
covered in the order presented.

 After Chapter 7 has been covered, you may proceed to Chapter 8 , or jump to either Chapter
 9 or Chapter 12 . (If you jump to Chapter 12 at this point, you will need to postpone sections
12.7, 12.8, and 12.10 until Chapters 9 and 11 have been covered.)

 After Chapter 9 has been covered, either of Chapters 10 or 11 may be covered. After Chap-
ter 11 , you may cover Chapters 13 through 17 in sequence. Next you can proceed to either
 Chapter 18 or Chapter 19 . Finally, Chapter 20 may be covered.

 This text’s approach starts with a fi rm foundation in structured, procedural programming
before delving fully into object-oriented programming and advanced data structures.

 Brief Overview of Each Chapter

 Chapter 1 : Introduction to Computers and Programming

 This chapter provides an introduction to the fi eld of computer science and covers the fun-
damentals of programming, problem solving, and software design. The components of pro-
grams, such as key words, variables, operators, and punctuation are covered. The tools of
the trade, such as pseudocode, fl ow charts, and hierarchy charts are also presented.

 Chapter 2 : Introduction to C++

 This chapter gets the student started in C++ by introducing data types, identifi ers, vari-
able declarations, constants, comments, program output, simple arithmetic operations, and
C-strings. Programming style conventions are introduced and good programming style
is modeled here, as it is throughout the text. An optional section explains the difference
between ANSI standard and pre-standard C++ programs.

 Chapter 3 : Expressions and Interactivity

 In this chapter the student learns to write programs that input and handle numeric, char-
acter, and string data. The use of arithmetic operators and the creation of mathematical
expressions are covered in greater detail, with emphasis on operator precedence. Debug-
ging is introduced, with a section on hand tracing a program. Sections are also included on
simple output formatting, on data type conversion and type casting, and on using library
functions that work with numbers.

 Chapter 4 : Making Decisions

 Here the student learns about relational operators, relational expressions and how to con-
trol the fl ow of a program with the if , if / else , and if / else if statements. The condi-
tional operator and the switch statement are also covered. Crucial applications of these
constructs are covered, such as menu-driven programs and the validation of input.

 Preface xix

 Chapter 5 : Loops and Files

 This chapter covers repetition control structures. The while loop, do - while loop, and for
loop are taught, along with common uses for these devices. Counters, accumulators, run-
ning totals, sentinels, and other application-related topics are discussed. Sequential fi le I/O
is also introduced. The student learns to read and write text fi les, and use loops to process
the data in a fi le.

 Chapter 6 : Functions

 In this chapter the student learns how and why to modularize programs, using both void
and value returning functions. Argument passing is covered, with emphasis on when argu-
ments should be passed by value versus when they need to be passed by reference. Scope of
variables is covered, and sections are provided on local versus global variables and on static
local variables. Overloaded functions are also introduced and demonstrated.

 Chapter 7 : Arrays

 In this chapter the student learns to create and work with single and multidimensional
arrays. Many examples of array processing are provided including examples illustrating
how to fi nd the sum, average, highest, and lowest values in an array and how to sum the
rows, columns, and all elements of a two-dimensional array. Programming techniques using
parallel arrays are also demonstrated, and the student is shown how to use a data fi le as
an input source to populate an array. STL vectors are introduced and compared to arrays.

 Chapter 8 : Sorting and Searching Arrays

 Here the student learns the basics of sorting arrays and searching for data stored in them.
The chapter covers the Bubble Sort, Selection Sort, Linear Search, and Binary Search algo-
rithms. There is also a section on sorting and searching STL vector objects.

 Chapter 9 : Pointers

 This chapter explains how to use pointers. Pointers are compared to and contrasted with
reference variables. Other topics include pointer arithmetic, initialization of pointers, rela-
tional comparison of pointers, pointers and arrays, pointers and functions, dynamic mem-
ory allocation, and more.

 Chapter 10 : Characters, C-strings, and More About the string Class

 This chapter discusses various ways to process text at a detailed level. Library functions for
testing and manipulating characters are introduced. C-strings are discussed, and the tech-
nique of storing C-strings in char arrays is covered. An extensive discussion of the string
class methods is also given.

 Chapter 11 : Structured Data

 The student is introduced to abstract data types and taught how to create them using struc-
tures, unions, and enumerated data types. Discussions and examples include using pointers
to structures, passing structures to functions, and returning structures from functions.

xx Preface

 Chapter 12 : Advanced File Operations

 This chapter covers sequential access, random access, text, and binary fi les. The various
modes for opening fi les are discussed, as well as the many methods for reading and writing
fi le contents. Advanced output formatting is also covered.

 Chapter 13 : Introduction to Classes

 The student now shifts focus to the object-oriented paradigm. This chapter covers the fun-
damental concepts of classes. Member variables and functions are discussed. The student
learns about private and public access specifi cations, and reasons to use each. The topics of
constructors, overloaded constructors, and destructors are also presented. The chapter pres-
ents a section modeling classes with UML and how to fi nd the classes in a particular problem.

 Chapter 14 : More About Classes

 This chapter continues the study of classes. Static members, friends, memberwise assign-
ment, and copy constructors are discussed. The chapter also includes in-depth sections on
operator overloading, object conversion, and object aggregation. There is also a section on
class collaborations and the use of CRC cards.

 Chapter 15 : Inheritance, Polymorphism, and Virtual Functions

 The study of classes continues in this chapter with the subjects of inheritance, polymor-
phism, and virtual member functions. The topics covered include base and derived class con-
structors and destructors, virtual member functions, base class pointers, static and dynamic
binding, multiple inheritance, and class hierarchies.

 Chapter 16 : Exceptions, Templates, and the Standard
Template Library (STL)

 The student learns to develop enhanced error trapping techniques using exceptions. Discus-
sion then turns to function and class templates as a method for reusing code. Finally, the
student is introduced to the containers, iterators, and algorithms offered by the Standard
Template Library (STL).

 Chapter 17 : Linked Lists

 This chapter introduces concepts and techniques needed to work with lists. A linked list
ADT is developed and the student is taught to code operations such as creating a linked list,
appending a node, traversing the list, searching for a node, inserting a node, deleting a node,
and destroying a list. A linked list class template is also demonstrated.

 Chapter 18 : Stacks and Queues

 In this chapter the student learns to create and use static and dynamic stacks and queues. The
operations of stacks and queues are defi ned, and templates for each ADT are demonstrated.

 Chapter 19 : Recursion

 This chapter discusses recursion and its use in problem solving. A visual trace of recursive
calls is provided, and recursive applications are discussed. Many recursive algorithms are
presented, including recursive functions for fi nding factorials, fi nding a greatest common

 Preface xxi

denominator (GCD), performing a binary search, and sorting (QuickSort). The classic Tow-
ers of Hanoi example is also presented. For students who need more challenge, there is a
section on exhaustive algorithms.

 Chapter 20 : Binary Trees

 This chapter covers the binary tree ADT and demonstrates many binary tree operations. The
student learns to traverse a tree, insert an element, delete an element, replace an element, test
for an element, and destroy a tree.

 Appendix A : Getting Started with Alice

 This appendix gives a quick introduction to Alice. Alice is free software that can be used to
teach fundamental programming concepts using 3D graphics.

 Appendix B : ASCII Character Set

 A list of the ASCII and Extended ASCII characters and their codes.

 Appendix C : Operator Precedence and Associativity

 A chart showing the C++ operators and their precedence.

 The following appendices are available online at www.pearsonhighered.com/gaddis .

 Appendix D : Introduction to Flowcharting

 A brief introduction to fl owcharting. This tutorial discusses sequence, selection, case, repeti-
tion, and module structures.

 Appendix E : Using UML in Class Design

 This appendix shows the student how to use the Unifi ed Modeling Language to design
classes. Notation for showing access specifi cation, data types, parameters, return values,
overloaded functions, composition, and inheritance are included.

 Appendix F : Namespaces

 This appendix explains namespaces and their purpose. Examples showing how to defi ne a
namespace and access its members are given.

 Appendix G : Passing Command Line Arguments

 Teaches the student how to write a C++ program that accepts arguments from the command
line. This appendix will be useful to students working in a command line environment, such
as Unix, Linux, or the Windows command prompt.

 Appendix H : Header File and Library Function Reference

 This appendix provides a reference for the C++ library functions and header fi les discussed
in the book.

 Appendix I : Binary Numbers and Bitwise Operations

 A guide to the C++ bitwise operators, as well as a tutorial on the internal storage of integers.

www.pearsonhighered.com/gaddis

xxii Preface

 Appendix J : Multi-Source File Programs

 Provides a tutorial on creating programs that consist of multiple source fi les. Function
header fi les, class specifi cation fi les, and class implementation fi les are discussed.

 Appendix K : Stream Member Functions for Formatting

 Covers stream member functions for formatting such as setf .

 Appendix L : Answers to Checkpoints

 Students may test their own progress by comparing their answers to the checkpoint exer-
cises against this appendix. The answers to all Checkpoints are included.

 Appendix M : Solutions to Odd-Numbered Review Questions

 Another tool that students can use to gauge their progress.

 Features of the Text
 Concept Each major section of the text starts with a concept statement.
Statements This statement summarizes the ideas of the section.

 Example Programs The text has hundreds of complete example programs, each
designed to highlight the topic currently being studied. In most
cases, these are practical, real-world examples. Source code for
these programs is provided so that students can run the programs
themselves.

 Program Output After each example program there is a sample of its screen
output. This immediately shows the student how the program
should function.

 In the Spotlight Each of these sections provides a programming problem and a
detailed, step-by-step analysis showing the student how to
solve it.

 VideoNotes A series of online videos, developed specifi cally for this book, is
available for viewing at www.pearsonhighered.com/gaddis .
Icons appear throughout the text alerting the student to videos
about specifi c topics.

 Checkpoints Checkpoints are questions placed throughout each chapter as
a self-test study aid. Answers for all Checkpoint questions can
be downloaded from the book’s Companion Web site at www.
pearsonhighered.com/gaddis . This allows students to check how
well they have learned a new topic.

 Notes Notes appear at appropriate places throughout the text. They are
short explanations of interesting or often misunderstood points
relevant to the topic at hand.

www.pearsonhighered.com/gaddis
www.pearsonhighered.com/gaddis
www.pearsonhighered.com/gaddis

Preface xxiii

 Warnings Warnings are notes that caution the student about certain C++
features, programming techniques, or practices that can lead to
malfunctioning programs or lost data.

 Case Studies Case studies that simulate real-world applications appear in
many chapters throughout the text. These case studies are de-
signed to highlight the major topics of the chapter in which they
appear.

 Review Questions Each chapter presents a thorough and diverse set of review
and Exercises questions, such as fi ll-in-the-blank and short answer, that check

the student’s mastery of the basic material presented in the chap-
ter. These are followed by exercises requiring problem solving
and analysis, such as the Algorithm Workbench , Predict the Out-
put , and Find the Errors sections. Answers to the odd-numbered
review questions and review exercises can be downloaded from
the book’s Companion Web site at www.pearsonhighered.com/
gaddis .

 Programming Each chapter offers a pool of programming exercises designed
Challenges to solidify the student’s knowledge of the topics currently being

studied. In most cases the assignments present real-world prob-
lems to be solved. When applicable, these exercises include input
validation rules.

 Group Projects There are several group programming projects throughout the
text, intended to be constructed by a team of students. One
student might build the program’s user interface, while another
student writes the mathematical code, and another designs and
implements a class the program uses. This process is similar to
the way many professional programs are written and encourages
team work within the classroom.

 Software Available for download from the book’s Companion Web site at
Development www.pearsonhighered.com/gaddis . This is an ongoing project
Project: that instructors can optionally assign to teams of students. It
Serendipity systematically develops a “real-world” software package: a
Booksellers point-of-sale program for the fi ctitious Serendipity Booksellers

organization. The Serendipity assignment for each chapter adds
more functionality to the software, using constructs and tech-
niques covered in that chapter. When complete, the program will
act as a cash register, manage an inventory database, and produce
a variety of reports.

 C++ Quick For easy access, a quick reference guide to the C++ language is
Reference Guide printed on the last two pages of Appendix C in the book.

 C++11 Throughout the text, new C++11 language features are
 introduced. Look for the C++11 icon to fi nd these new features.

1111

www.pearsonhighered.com/gaddis
www.pearsonhighered.com/gaddis
www.pearsonhighered.com/gaddis

xxiv Preface

 Supplements
 Student Online Resources

 Many student resources are available for this book from the publisher. The following items
are available on the Gaddis Series Companion Web site at www.pearsonhighered.com/gaddis :

 ● The source code for each example program in the book

 ● Access to the book’s companion VideoNotes

 ● A full set of appendices, including answers to the Checkpoint questions and answers
to the odd-numbered review questions

 ● A collection of valuable Case Studies

 ● The complete Serendipity Booksellers Project

 Integrated Development Environment (IDE) Resource Kits

 Professors who adopt this text can order it for students with a kit containing fi ve popular
C++ IDEs (Microsoft® Visual Studio Express Edition, Dev C++, NetBeans, Eclipse, and
CodeLite) and access to a Web site containing written and video tutorials for getting started
in each IDE. For ordering information, please contact your campus Pearson Education rep-
resentative or visit www.pearsonhighered.com/cs .

 Online Practice and Assessment with MyProgrammingLab

 MyProgrammingLab helps students fully grasp the logic, semantics, and syntax of pro-
gramming. Through practice exercises and immediate, personalized feedback, MyProgram-
mingLab improves the programming competence of beginning students who often struggle
with the basic concepts and paradigms of popular high-level programming languages.

 A self-study and homework tool, a MyProgrammingLab course consists of hundreds of
small practice exercises organized around the structure of this textbook. For students, the
system automatically detects errors in the logic and syntax of their code submissions and
offers targeted hints that enable students to fi gure out what went wrong—and why. For
instructors, a comprehensive gradebook tracks correct and incorrect answers and stores the
code inputted by students for review.

 MyProgrammingLab is offered to users of this book in partnership with Turing’s Craft, the
makers of the CodeLab interactive programming exercise system. For a full demonstration,
to see feedback from instructors and students, or to get started using MyProgrammingLab
in your course, visit www.myprogramminglab.com .

 Instructor Resources

 The following supplements are available to qualifi ed instructors only:

 • Answers to all Review Questions in the text

 • Solutions for all Programming Challenges in the text

 • PowerPoint presentation slides for every chapter

 • Computerized test bank

www.pearsonhighered.com/gaddis
www.pearsonhighered.com/cs
www.myprogramminglab.com

 Preface xxv

 • Answers to all Student Lab Manual questions

 • Solutions for all Student Lab Manual programs

 Visit the Pearson Instructor Resource Center (www.pearsonhighered.com/irc) for
information on how to access instructor resources.

 Textbook Web site

 Student and instructor resources, including links to download Microsoft® Visual Studio
Express and other popular IDEs, for all the books in the Gaddis Starting Out With series
can be accessed at the following URL:

 http://www.pearsonhighered.com/gaddis

 Get this book the way you want it!
 This book is part of Pearson Education’s custom database for Computer Science textbooks.
Use our online PubSelect system to select just the chapters you need from this, and other,
Pearson Education CS textbooks. You can edit the sequence to exactly match your course
organization and teaching approach. Visit www.pearsoncustom.com/cs for details.

 Which Gaddis C++ book is right for you?
 The Starting Out with C++ Series includes three books, one of which is sure to fi t your course:

 ● Starting Out with C++: From Control Structures through Objects

 ● Starting Out with C++: Early Objects

 ● Starting Out with C++: Brief Version

 The following chart will help you determine which book is right for your course.

 ■ FROM CONTROL STRUCTURES
THROUGH OBJECTS

 ■ BRIEF VERSION

 ■ EARLY OBJECTS

 LATE INTRODUCTION OF OBJECTS
 Classes are introduced in Chapter 13 of the stan-
dard text and Chapter 11 of the brief text, after
control structures, functions, arrays, and pointers.
Advanced OOP topics, such as inheritance and
polymorphism, are covered in the following two
chapters.

 EARLIER INTRODUCTION OF OBJECTS
 Classes are introduced in Chapter 7 , after
control structures and functions, but before
arrays and pointers. Their use is then
integrated into the remainder of the text.
Advanced OOP topics, such as inheritance
and polymorphism, are covered in Chapters
 11 and 15 .

 INTRODUCTION OF DATA STRUCTURES
AND RECURSION
 Linked lists, stacks and queues, and binary trees
are introduced in the fi nal chapters of the standard
text. Recursion is covered after stacks and queues,
but before binary trees. These topics are not
covered in the brief text, though it does have
appendices dealing with linked lists and recursion.

 INTRODUCTION OF DATA STRUCTURES
AND RECURSION
 Linked lists, stacks and queues, and binary
trees are introduced in the fi nal chapters of
the text, after the chapter on recursion.

www.pearsonhighered.com/irc
http://www.pearsonhighered.com/gaddis
www.pearsoncustom.com/cs

xxvi Preface

 Acknowledgments
 There have been many helping hands in the development and publication of this text. We
would like to thank the following faculty reviewers for their helpful suggestions and expertise.

 Reviewers for the 8th Edition

 Robert Burn
 Diablo Valley College

 Michael Dixon
 Sacramento City College

 Qiang Duan
 Penn State University—Abington

 Daniel Edwards
 Ohlone College

 Xisheng Fang
 Ohlone College

 Ken Hang
 Green River Community College

 Kay Johnson
 Community College of Rhode Island

 Michelle Levine
 Broward College

 Cindy Lindstrom
 Lakeland College

 Susan Reeder
 Seattle University

 Sandra Roberts
 Snead College

 Lopa Roychoudhuri
 Angelo State University

 Richard Snyder
 Lehigh Carbon Community College

 Donald Southwell
 Delta College

 Chadd Williams
 Pacific University

 Reviewers for Previous Editions

 Ahmad Abuhejleh
 University of Wisconsin–River Falls

 David Akins
 El Camino College

 Steve Allan
 Utah State University

 Vicki Allan
 Utah State University

 Karen M. Arlien
 Bismark State College

 Mary Astone
 Troy University

 Ijaz A. Awan
 Savannah State University

 Robert Baird
 Salt Lake Community College

 Don Biggerstaff
 Fayetteville Technical Community College

 Michael Bolton
 Northeastern Oklahoma State University

 Bill Brown
 Pikes Peak Community College

 Charles Cadenhead
 Richland Community College

 Randall Campbell
 Morningside College

 Wayne Caruolo
 Red Rocks Community College

 Cathi Chambley-Miller
 Aiken Technical College

 C.C. Chao
 Jacksonville State University

 Preface xxvii

 Joseph Chao
 Bowling Green State University

 Royce Curtis
 Western Wisconsin Technical College

 Joseph DeLibero
 Arizona State University

 Jeanne Douglas
 University of Vermont

 Michael Dowell
 Augusta State U

 William E. Duncan
 Louisiana State University

 Judy Etchison
 Southern Methodist University

 Dennis Fairclough
 Utah Valley State College

 Mark Fienup
 University of Northern Iowa

 Richard Flint
 North Central College

 Ann Ford Tyson
 Florida State University

 Jeanette Gibbons
 South Dakota State University

 James Gifford
 University of Wisconsin–Stevens Point

 Leon Gleiberman
 Touro College

 Barbara Guillott
 Louisiana State University

 Ranette Halverson, Ph.D.
 Midwestern State University

 Carol Hannahs
 University of Kentucky

 Dennis Heckman
 Portland Community College

 Ric Heishman
 George Mason University

 Michael Hennessy
 University of Oregon

 Ilga Higbee
 Black Hawk College

 Patricia Hines
 Brookdale Community College

 Mike Holland
 Northern Virginia Community College

 Mary Hovik
 Lehigh Carbon Community College

 Richard Hull
 Lenoir-Rhyne College

 Chris Kardaras
 North Central College

 Willard Keeling
 Blue Ridge Community College

 A.J. Krygeris
 Houston Community College

 Sheila Lancaster
 Gadsden State Community College

 Ray Larson
 Inver Hills Community College

 Jennifer Li
 Ohlone College

 Norman H. Liebling
 San Jacinto College

 Zhu-qu Lu
 University of Maine, Presque Isle

 Heidar Malki
 University of Houston

 Debbie Mathews
 J. Sargeant Reynolds Community College

 Rick Matzen
 Northeastern State University

 Robert McDonald
 East Stroudsburg University

 James McGuffee
 Austin Community College

xxviii Preface

 Dean Mellas
 Cerritos College

 Lisa Milkowski
 Milwaukee School of Engineering

 Marguerite Nedreberg
 Youngstown State University

 Lynne O’Hanlon
 Los Angeles Pierce College

 Frank Paiano
 Southwestern Community College

 Theresa Park
 Texas State Technical College

 Mark Parker
 Shoreline Community College

 Tino Posillico
 SUNY Farmingdale

 Frederick Pratter
 Eastern Oregon University

 Susan L. Quick
 Penn State University

 Alberto Ramon
 Diablo Valley College

 Bazlur Rasheed
 Sault College of Applied Arts and Technology

 Farshad Ravanshad
 Bergen Community College

 Dolly Samson
 Weber State University

 Ruth Sapir
 SUNY Farmingdale

 Jason Schatz
 City College of San Francisco

 Dr. Sung Shin
 South Dakota State University

 Bari Siddique
 University of Texas at Brownsville

 William Slater
 Collin County Community College

 Shep Smithline
 University of Minnesota

 Caroline St. Claire
 North Central College

 Kirk Stephens
 Southwestern Community College

 Cherie Stevens
 South Florida Community College

 Dale Suggs
 Campbell University

 Mark Swanson
 Red Wing Technical College

 Ann Sudell Thorn
 Del Mar College

 Martha Tillman
 College of San Mateo

 Ralph Tomlinson
 Iowa State University

 David Topham
 Ohlone College

 Robert Tureman
 Paul D. Camp Community College

 Arisa K. Ude
 Richland College

 Peter van der Goes
 Rose State College

 Stewart Venit
 California State University, Los Angeles

 Judy Walters
 North Central College

 John H. Whipple
 Northampton Community College

 Aurelia Williams
 Norfolk State University

 Vida Winans
 Illinois Institute of Technology

 Preface xxix

 I would like to thank my family for their love and support in all of my many projects. I
am extremely fortunate to have Matt Goldstein as my editor. I am also fortunate to have
Kathryn Ferranti as marketing coordinator. She does a great job getting my books out to
the academic community. I had a great production team led by Marilyn Lloyd and Kayla
Smith-Tarbox. Thanks to you all!

 About the Author
 Tony Gaddis is the principal author of the Starting Out with series of textbooks. He has
nearly two decades of experience teaching computer science courses, primarily at Haywood
Community College. Tony is a highly acclaimed instructor who was previously selected as
the North Carolina Community College Teacher of the Year and has received the Teaching
Excellence award from the National Institute for Staff and Organizational Development.
The Starting Out With series includes introductory textbooks covering Programming Logic
and Design, Alice, C++, Java™, Microsoft® Visual Basic®, Microsoft® Visual C#, Python,
and App Inventor, all published by Pearson.

Through the power of practice and immediate personalized

feedback, MyProgrammingLab improves your performance.

Learn more at www.myprogramminglab.com

get with the programming

MyProgrammingLab™

www.myprogramminglab.com

1

 1.1 Why Program?

 CONCEPT: Computers can do many different jobs because they are programmable.

 Think about some of the different ways that people use computers. In school, students use
computers for tasks such as writing papers, searching for articles, sending e-mail, and partici-
pating in online classes. At work, people use computers to analyze data, make presentations,
conduct business transactions, communicate with customers and coworkers, control machines
in manufacturing facilities, and do many other things. At home, people use computers for
tasks such as paying bills, shopping online, social networking, and playing computer games.
And don’t forget that smart phones, iPods ® , car navigation systems, and many other devices
are computers as well. The uses of computers are almost limitless in our everyday lives.

 Computers can do such a wide variety of things because they can be programmed. This
means that computers are not designed to do just one job, but any job that their programs
tell them to do. A program is a set of instructions that a computer follows to perform a
task. For example, Figure 1-1 shows screens using Microsoft Word and PowerPoint, two
commonly used programs.

 Programs are commonly referred to as software . Software is essential to a computer because
without software, a computer can do nothing. All of the software that we use to make our
computers useful is created by individuals known as programmers or software developers.
A programmer , or software developer , is a person with the training and skills necessary
to design, create, and test computer programs. Computer programming is an exciting and
rewarding career. Today, you will find programmers working in business, medicine, govern-
ment, law enforcement, agriculture, academics, entertainment, and almost every other field.

 Introduction to Computers
and Programming 1

 TOPICS

 1.1 Why Program?
 1.2 Computer Systems: Hardware

and Software
 1.3 Programs and Programming

Languages

 1.4 What Is a Program Made of?
 1.5 Input, Processing, and Output
 1.6 The Programming Process
 1.7 Procedural and Object-Oriented

Programming

 C
H

A
P

T
E

R

2 Chapter 1 Introduction to Computers and Programming

 Computer programming is both an art and a science. It is an art because every aspect of
a program should be carefully designed. Listed below are a few of the things that must be
designed for any real-world computer program:

 • The logical flow of the instructions
 • The mathematical procedures
 • The appearance of the screens
 • The way information is presented to the user
 • The program’s “user-friendliness”
 • Manuals and other forms of written documentation

 There is also a scientific, or engineering, side to programming. Because programs rarely
work right the first time they are written, a lot of testing, correction, and redesigning is
required. This demands patience and persistence from the programmer. Writing software
demands discipline as well. Programmers must learn special languages like C++ because
computers do not understand English or other human languages. Languages such as C++
have strict rules that must be carefully followed.

 Both the artistic and scientific nature of programming make writing computer software like
designing a car: Both cars and programs should be functional, efficient, powerful, easy to
use, and pleasing to look at.

 1.2 Computer Systems: Hardware and Software

 CONCEPT: All computer systems consist of similar hardware devices and software
components. This section provides an overview of standard computer
hardware and software organization.

 Figure 1-1 A word processing program and a presentation program

 1.2 Computer Systems: Hardware and Software 3

 Hardware
 Hardware refers to the physical components that a computer is made of. A computer, as
we generally think of it, is not an individual device, but a system of devices. Like the instru-
ments in a symphony orchestra, each device plays its own part. A typical computer system
consists of the following major components:

 • The central processing unit (CPU)
 • Main memory
 • Secondary storage devices
 • Input devices
 • Output devices

 The organization of a computer system is depicted in Figure 1-2 .

Input
Devices

Output
Devices

Secondary
Storage Devices

Central Processing
Unit

Main Memory
(RAM)

 Figure 1-2

 The CPU

 When a computer is performing the tasks that a program tells it to do, we say that the
computer is running or executing the program. The central processing unit , or CPU , is the
part of a computer that actually runs programs. The CPU is the most important component
in a computer because without it, the computer could not run software.

 In the earliest computers, CPUs were huge devices made of electrical and mechanical compo-
nents such as vacuum tubes and switches. Figure 1-3 shows such a device. The two women in

4 Chapter 1 Introduction to Computers and Programming

 Figure 1-3

the photo are working with the historic ENIAC computer. The ENIAC, considered by many
to be the world’s first programmable electronic computer, was built in 1945 to calculate
artillery ballistic tables for the U.S. Army. This machine, which was primarily one big CPU,
was 8 feet tall, 100 feet long, and weighed 30 tons.

 Today, CPUs are small chips known as microprocessors . Figure 1-4 shows a photo of a lab tech-
nician holding a modern-day microprocessor. In addition to being much smaller than the old
electro-mechanical CPUs in early computers, microprocessors are also much more powerful.

 Figure 1-4

 1.2 Computer Systems: Hardware and Software 5

 The CPU’s job is to fetch instructions, follow the instructions, and produce some result.
Internally, the central processing unit consists of two parts: the control unit and the arith-
metic and logic unit (ALU) . The control unit coordinates all of the computer’s operations.
It is responsible for determining where to get the next instruction and regulating the other
major components of the computer with control signals. The arithmetic and logic unit, as
its name suggests, is designed to perform mathematical operations. The organization of the
CPU is shown in Figure 1-5 .

Central Processing Unit

Instruction
(Input)

Arithmetic and
Logic Unit

Control Unit

Result
(Output)

 Figure 1-5

 A program is a sequence of instructions stored in the computer’s memory. When a computer
is running a program, the CPU is engaged in a process known formally as the fetch/decode/
execute cycle . The steps in the fetch/decode/execute cycle are as follows:

 Fetch The CPU’s control unit fetches, from main memory, the next instruc-
tion in the sequence of program instructions.

 Decode The instruction is encoded in the form of a number. The control unit
decodes the instruction and generates an electronic signal.

 Execute The signal is routed to the appropriate component of the computer
(such as the ALU, a disk drive, or some other device). The signal causes
the component to perform an operation.

 These steps are repeated as long as there are instructions to perform.

 Main Memory

 You can think of main memory as the computer’s work area. This is where the computer
stores a program while the program is running, as well as the data that the program is
working with. For example, suppose you are using a word processing program to write an
essay for one of your classes. While you do this, both the word processing program and the
essay are stored in main memory.

 Main memory is commonly known as random-access memory or RAM . It is called this
because the CPU is able to quickly access data stored at any random location in RAM.
RAM is usually a volatile type of memory that is used only for temporary storage while
a program is running. When the computer is turned off, the contents of RAM are erased.
Inside your computer, RAM is stored in small chips.

 A computer’s memory is divided into tiny storage locations known as bytes. One byte is
enough memory to store only a letter of the alphabet or a small number. In order to do

6 Chapter 1 Introduction to Computers and Programming

anything meaningful, a computer must have lots of bytes. Most computers today have mil-
lions, or even billions, of bytes of memory.

 Each byte is divided into eight smaller storage locations known as bits. The term bit stands
for binary digit . Computer scientists usually think of bits as tiny switches that can be either
on or off. Bits aren’t actual “switches,” however, at least not in the conventional sense. In
most computer systems, bits are tiny electrical components that can hold either a positive
or a negative charge. Computer scientists think of a positive charge as a switch in the on
position and a negative charge as a switch in the off position.

 Each byte is assigned a unique number known as an address . The addresses are ordered
from lowest to highest. A byte is identified by its address in much the same way a post
office box is identified by an address. Figure 1-6 shows a group of memory cells with their
addresses. In the illustration, sample data is stored in memory. The number 149 is stored in
the cell with the address 16, and the number 72 is stored at address 23.

0

10

20

1

11

21

2

12

22

3

13

23

4

14

24

5

15

25

6

16

26

7

17

27

8

18

28

9

19

29

149

72

 Figure 1-6

 Secondary Storage

 Secondary storage is a type of memory that can hold data for long periods of time—even
when there is no power to the computer. Frequently used programs are stored in secondary
memory and loaded into main memory as needed. Important information, such as word pro-
cessing documents, payroll data, and inventory figures, is saved to secondary storage as well.

 The most common type of secondary storage device is the disk drive. A disk drive stores
data by magnetically encoding it onto a circular disk. Most computers have a disk drive
mounted inside their case. External disk drives, which connect to one of the computer’s
communication ports, are also available. External disk drives can be used to create backup
copies of important data or to move data to another computer.

 In addition to external disk drives, many types of devices have been created for copying
data and for moving it to other computers. For many years floppy disk drives were popular.
A floppy disk drive records data onto a small floppy disk, which can be removed from the
drive. The use of floppy disk drives has declined dramatically in recent years, in favor of
superior devices such as USB drives. USB drives are small devices that plug into the com-
puter’s USB (universal serial bus) port and appear to the system as a disk drive. USB drives,
which use flash memory to store data, are inexpensive, reliable, and small enough to be
carried in your pocket.

 Optical devices such as the CD (compact disc) and the DVD (digital versatile disc) are
also popular for data storage. Data is not recorded magnetically on an optical disc, but is
encoded as a series of pits on the disc surface. CD and DVD drives use a laser to detect the
pits and thus read the encoded data. Optical discs hold large amounts of data, and because
recordable CD and DVD drives are now commonplace, they are good mediums for creating
backup copies of data.

 1.2 Computer Systems: Hardware and Software 7

 Input Devices

 Input is any information the computer collects from the outside world. The device that
collects the information and sends it to the computer is called an input device . Common
input devices are the keyboard, mouse, scanner, digital camera, and microphone. Disk
drives, CD/DVD drives, and USB drives can also be considered input devices because pro-
grams and information are retrieved from them and loaded into the computer’s memory.

 Output Devices

 Output is any information the computer sends to the outside world. It might be a sales
report, a list of names, or a graphic image. The information is sent to an output device ,
which formats and presents it. Common output devices are monitors, printers, and speak-
ers. Disk drives, USB drives, and CD/DVD recorders can also be considered output devices
because the CPU sends them information to be saved.

 Software
 If a computer is to function, software is not optional. Everything that a computer does,
from the time you turn the power switch on until you shut the system down, is under the
control of software. There are two general categories of software: system software and
application software. Most computer programs clearly fit into one of these two categories.
Let’s take a closer look at each.

 System Software

 The programs that control and manage the basic operations of a computer are generally referred
to as system software . System software typically includes the following types of programs:

 • Operating Systems
 An operating system is the most fundamental set of programs on a computer. The

operating system controls the internal operations of the computer’s hardware, man-
ages all the devices connected to the computer, allows data to be saved to and retrieved
from storage devices, and allows other programs to run on the computer.

 • Utility Programs
 A utility program performs a specialized task that enhances the computer’s operation

or safeguards data. Examples of utility programs are virus scanners, file-compression
programs, and data-backup programs.

 • Software Development Tools
 The software tools that programmers use to create, modify, and test software are

referred to as software development tools . Compilers and integrated development
environments, which we discuss later in this chapter, are examples of programs that
fall into this category.

 Application Software

 Programs that make a computer useful for everyday tasks are known as application soft-
ware . These are the programs that people normally spend most of their time running on
their computers. Figure 1-1 , at the beginning of this chapter, shows screens from two com-
monly used applications—Microsoft Word, a word processing program, and Microsoft

8 Chapter 1 Introduction to Computers and Programming

PowerPoint, a presentation program. Some other examples of application software are
spreadsheet programs, e-mail programs, Web browsers, and game programs.

 Checkpoint
 1.1 Why is the computer used by so many different people, in so many different

professions?

 1.2 List the five major hardware components of a computer system.

 1.3 Internally, the CPU consists of what two units?

 1.4 Describe the steps in the fetch/decode/execute cycle.

 1.5 What is a memory address? What is its purpose?

 1.6 Explain why computers have both main memory and secondary storage.

 1.7 What are the two general categories of software?

 1.8 What fundamental set of programs control the internal operations of the
computer’s hardware?

 1.9 What do you call a program that performs a specialized task, such as a virus
scanner, a file-compression program, or a data-backup program?

 1.10 Word processing programs, spreadsheet programs, e-mail programs, Web
browsers, and game programs belong to what category of software?

 1.3 Programs and Programming Languages

 CONCEPT: A program is a set of instructions a computer follows in order to perform
a task. A programming language is a special language used to write
computer programs.

 What Is a Program?
 Computers are designed to follow instructions. A computer program is a set of instructions that
tells the computer how to solve a problem or perform a task. For example, suppose we want
the computer to calculate someone’s gross pay. Here is a list of things the computer should do:

 1. Display a message on the screen asking “How many hours did you work?”
 2. Wait for the user to enter the number of hours worked. Once the user enters a number,

store it in memory.
 3. Display a message on the screen asking “How much do you get paid per hour?”
 4. Wait for the user to enter an hourly pay rate. Once the user enters a number, store it

in memory.
 5. Multiply the number of hours by the amount paid per hour, and store the result in

memory.
 6. Display a message on the screen that tells the amount of money earned. The message

must include the result of the calculation performed in Step 5.

 Collectively, these instructions are called an algorithm . An algorithm is a set of well-defined
steps for performing a task or solving a problem. Notice these steps are sequentially ordered.
Step 1 should be performed before Step 2, and so forth. It is important that these instruc-
tions be performed in their proper sequence.

 1.3 Programs and Programming Languages 9

 Although you and I might easily understand the instructions in the pay-calculating algo-
rithm, it is not ready to be executed on a computer. A computer’s CPU can only process
instructions that are written in machine language . If you were to look at a machine lan-
guage program, you would see a stream of binary numbers (numbers consisting of only 1s
and 0s). The binary numbers form machine language instructions, which the CPU interprets
as commands. Here is an example of what a machine language instruction might look like:

 1011010000000101

 As you can imagine, the process of encoding an algorithm in machine language is very
tedious and difficult. In addition, each different type of CPU has its own machine language.
If you wrote a machine language program for computer A and then wanted to run it on
computer B , which has a different type of CPU, you would have to rewrite the program in
computer B’s machine language.

 Programming languages , which use words instead of numbers, were invented to ease the task
of programming. A program can be written in a programming language, such as C++, which
is much easier to understand than machine language. Programmers save their programs in
text files, and then use special software to convert their programs to machine language.

 Program 1-1 shows how the pay-calculating algorithm might be written in C++.

 The “Program Output with Example Input” shows what the program will display on the
screen when it is running. In the example, the user enters 10 for the number of hours
worked and 15 for the hourly pay rate. The program displays the earnings, which are $150.

 NOTE: The line numbers that are shown in Program 1-1 are not part of the program.
This book shows line numbers in all program listings to help point out specific parts
of the program.

 Program 1-1

 1 // This program calculates the user's pay.
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 {
 7 double hours, rate, pay;
 8
 9 // Get the number of hours worked.
 10 cout << "How many hours did you work? ";
 11 cin >> hours;
 12
 13 // Get the hourly pay rate.
 14 cout << "How much do you get paid per hour? ";
 15 cin >> rate;
 16
 17 // Calculate the pay.
 18 pay = hours * rate;

(program continues)

